Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2785: 37-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427186

RESUMO

In this chapter, we will present a high-throughput method applied in our laboratory for the structural elucidation of the cerebrospinal fluid (CSF) N-glycome. This methodology is based on a commercial equipment developed by WATERS™ to speed up N-deglycosylation and N-glycan labeling of glycoproteins of pharmaceutical and biological interest such as monoclonal antibodies. This analytical kit is sold under the trade name of RapiFluor-MS (RFMS). We have slightly modified the methodology, increasing the glycosylation time and using a high-resolution mass analyzer for the analysis of CSF N-glycans, thus obtaining a high-throughput method (up to 96 samples simultaneously), mass accuracy better than 5 ppm, and the ability to separate and identify isomers.


Assuntos
Doença de Alzheimer , Glicômica , Humanos , Cromatografia Líquida de Alta Pressão , Glicômica/métodos , Doença de Alzheimer/líquido cefalorraquidiano , Glicosilação , Glicoproteínas/química , Polissacarídeos/química
2.
Methods Mol Biol ; 2785: 49-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427187

RESUMO

In this chapter, we will present the methodology currently applied in our laboratory for the structural elucidation of the cerebrospinal fluid (CSF) N-glycome. N-glycans are released from denatured carboxymethylated glycoproteins by digestion with peptide-N-glycosidase F (PNGase F) and purified using both C18 Sep-Pak® and porous graphitized carbon (PGC) HyperSep™ Hypercarb™ solid phase extraction (SPE) cartridges. The glycan pool is subsequently permethylated to increase mass spectrometry sensitivity. Molecular assignments are performed through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) analysis considering either the protein N-linked glycosylation pathway or MALDI TOF MS/MS data. Each stage has been optimized to obtain high-quality mass spectra in reflector mode with an optimal signal-to-noise ratio up to m/z 4800. This method has been successfully adopted to associate specific N-glycome profiles to the early and the advanced phases of Alzheimer's disease (AD).


Assuntos
Glicômica , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Glicômica/métodos , Glicoproteínas/química , Glicosilação , Polissacarídeos/química
3.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698928

RESUMO

Sialidosis is an ultra-rare multisystemic lysosomal disease caused by mutations in the neuraminidase 1 (NEU1) gene. The severe type II form of the disease manifests with a prenatal/infantile or juvenile onset, bone abnormalities, severe neuropathology, and visceromegaly. A subset of these patients present with nephrosialidosis, characterized by abrupt onset of fulminant glomerular nephropathy. We studied the pathophysiological mechanism of the disease in 2 NEU1-deficient mouse models, a constitutive Neu1-knockout, Neu1ΔEx3, and a conditional phagocyte-specific knockout, Neu1Cx3cr1ΔEx3. Mice of both strains exhibited terminal urinary retention and severe kidney damage with elevated urinary albumin levels, loss of nephrons, renal fibrosis, presence of storage vacuoles, and dysmorphic mitochondria in the intraglomerular and tubular cells. Glycoprotein sialylation in glomeruli, proximal distal tubules, and distal tubules was drastically increased, including that of an endocytic reabsorption receptor megalin. The pool of megalin bearing O-linked glycans with terminal galactose residues, essential for protein targeting and activity, was reduced to below detection levels. Megalin levels were severely reduced, and the protein was directed to lysosomes instead of the apical membrane. Together, our results demonstrated that desialylation by NEU1 plays a crucial role in processing and cellular trafficking of megalin and that NEU1 deficiency in sialidosis impairs megalin-mediated protein reabsorption.


Assuntos
Nefropatias , Mucolipidoses , Animais , Humanos , Camundongos , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mucolipidoses/genética , Mucolipidoses/patologia , Neuraminidase/genética
4.
Front Mol Biosci ; 10: 1082526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876040

RESUMO

Currently, the use of probiotic strains and their products represents a promising innovative approach as an antagonist treatment against many human diseases. Previous studies showed that a strain of Limosilactobacillus fermentum (LAC92), previously defined as Lactobacillus fermentum, exhibited a suitable amensalistic property. The present study aimed to purify the active components from LAC92 to evaluate the biological properties of soluble peptidoglycan fragments (SPFs). The cell-free supernatant (CFS) and bacterial cells were separated after 48 h of growth in MRS medium broth and treated for isolation of SPFs. Antimicrobial activity and proliferation analysis on the human cell line HTC116 were performed using technologies such as xCELLigence, count and viability, and clonogenic analysis. MALDI-MS investigation and docking analysis were performed to determine the molecular structure and hypothetical mode of action, respectively. Our results showed that the antimicrobial activity was mainly due to SPFs. Moreover, the results obtained when investigating the SPF effect on the cell line HCT116 showed substantial preliminary evidence, suggesting their significant cytostatic and quite antiproliferative properties. Although MALDI was unable to identify the molecular structure, it was subsequently revealed by analysis of the bacterial genome. The amino acid structure is called peptide 92. Furthermore, we confirmed by molecular docking studies the interaction of peptide 92 with MDM2 protein, the negative regulator of p53. This study showed that SPFs from the LAC92 strain exerted anticancer effects on the human colon cancer HCT116 cell line via antiproliferation and inducing apoptosis. These findings indicated that this probiotic strain might be a potential candidate for applications in functional products in the future. Further examination is needed to understand the specific advantages of this probiotic strain and improve its functional features to confirm these data. Moreover, deeper research on peptide 92 could increase our knowledge and help us understand if it will be possible to apply to specific diseases such as CRC.

5.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360826

RESUMO

Glycosylation is a complex post-translational modification that conveys functional diversity to glycoconjugates. Cell surface glycosylation mediates several biological activities such as induction of the intracellular signaling pathway and pathogen recognition. Red blood cell (RBC) membrane N-glycans determine blood type and influence cell lifespan. Although several proteomic studies have been carried out, the glycosylation of RBC membrane proteins has not been systematically investigated. This work aims at exploring the human RBC N-glycome by high-sensitivity MALDI-MS techniques to outline a fingerprint of RBC N-glycans. To this purpose, the MALDI-TOF spectra of healthy subjects harboring different blood groups were acquired. Results showed the predominant occurrence of neutral and sialylated complex N-glycans with bisected N-acetylglucosamine and core- and/or antennary fucosylation. In the higher mass region, these species presented with multiple N-acetyllactosamine repeating units. Amongst the detected glycoforms, the presence of glycans bearing ABO(H) antigens allowed us to define a distinctive spectrum for each blood group. For the first time, advanced glycomic techniques have been applied to a comprehensive exploration of human RBC N-glycosylation, providing a new tool for the early detection of distinct glycome changes associated with disease conditions as well as for understanding the molecular recognition of pathogens.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Eritrócitos/metabolismo , Glicômica , Polissacarídeos/análise , Processamento de Proteína Pós-Traducional , Glicosilação , Humanos , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
iScience ; 24(4): 102323, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33889819

RESUMO

Glycosylation is a fundamental post-translational modification of proteins that boosts their structural diversity providing subtle and specialized biological properties and functions. All those genetic diseases due to a defective glycan biosynthesis and attachment to the nascent glycoproteins fall within the wide area of congenital disorders of glycosylation (CDG), mostly causing multisystem involvement. In the present paper, we detailed the unique serum N-glycosylation of a CDG-candidate patient with an unexplained neurological phenotype and liver adenomatosis harboring a recurrent pathogenic HNF1α variant. Serum transferrin isoelectric focusing showed a surprising N-glycosylation pattern consisting on hyposialylation, as well as remarkable hypersialylation. Mass spectrometry-based glycomic analyses of individual serum glycoproteins enabled to unveil hypersialylated complex N-glycans comprising up to two sialic acids per antenna. Further advanced MS analysis showed the additional sialic acid is bonded through an α2-6 linkage to the peripheral N-acetylglucosamine residue.

7.
Angew Chem Int Ed Engl ; 60(18): 10023-10031, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33522128

RESUMO

Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A. faecalis LPS might be used as a safe adjuvant. In this study, we characterized the structure of both the lipooligosaccharide (LOS) and LPS from A. faecalis. We synthesized three lipid A molecules with different degrees of acylation by an efficient route involving the simultaneous introduction of 1- and 4'-phosphates. Hexaacylated A. faecalis lipid A showed moderate agonistic activity towards TLR4-mediated signaling and the ability to elicit a discrete interleukin-6 release in human cell lines and mice. It was thus found to be the active principle of the LOS/LPS and a promising vaccine adjuvant candidate.


Assuntos
Alcaligenes faecalis/química , Lipídeo A/química , Lipopolissacarídeos/química , Animais , Configuração de Carboidratos , Linhagem Celular , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Lipídeo A/farmacologia , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/farmacologia , Camundongos , Receptor 4 Toll-Like/agonistas
8.
Allergy ; 76(8): 2500-2509, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33583051

RESUMO

PURPOSE: Tear fluid N-Glycome from patients affected with vernal (VKC) and atopic keratoconjunctivitis (AKC) was investigated to identify specific changes in tears and to recognize possible glyco-biomarkers. METHODS: The analysis of the N-glycans was performed using matrix-assisted laser desorption ionization mass spectrometry on single tear samples. Tears from control normal subjects (CTRL), VKC and AKC patients were processed and treated with peptide N-glycosidase F (PNGase F) to deglycosylate N-glycoproteins. Released N-glycans were purified, permethylated, and analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and tandem mass spectrometry (MALDI-TOF MS and MALDI-TOF MS/MS). RESULTS: More than 150 complex N-glycans, including highly fucosylated biantennary, triantennary, tetra-antennary, and bisecting species, were observed in our spectra. Three distinct patterns for CTRL, VKC, and AKC patients were identified in terms of relative intensities for some N-glycans structures. Major variations involved bisecting and hyperfucosylated glycoforms. The most intense ions were associated with species at m/z 1907.0 (asialo, agalacto, bisected, biantennary structure-NGA2B) in CTRL MS profiles, at m/z 2605.3 and 2966.5 in VKC, and at m/z 2792.4 in AKC corresponding to a well-known biantennary, disialylated N-glycan. Several peaks were associated with structures bearing one or two Lewis X epitopes. Structures were confirmed by MS/MS analysis. Quantitative differences among the three groups were statistically significant. CONCLUSIONS: Tear MS profiles are rich in specific glycoforms, particularly those with a high fucosylation degree, indicating both core and peripheral decoration. Tear N-glycome analysis provided important information for a better comprehension of VKC and AKC alterations at the molecular level.


Assuntos
Conjuntivite Alérgica , Ceratoconjuntivite , Conjuntivite Alérgica/diagnóstico , Glicômica , Humanos , Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Lágrimas
9.
Glycoconj J ; 38(2): 201-211, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32915358

RESUMO

N-glycan analyses may serve uncovering disease-associated biomarkers, as well as for profiling distinctive changes supporting diagnosis of genetic disorders of glycan biosynthesis named congenital disorders of glycosylation (CDG). Strategies based on liquid chromatography (LC) preferentially coupled to electrospray ionization (ESI) - mass spectrometry (MS) have emerged as powerful analytical methods for N-glycan identification and characterization. To enhance detection sensitivity, glycans are commonly labelled with a functional tag prior to LC-MS analysis. Since most derivatization techniques are notoriously time-consuming, some commercial analytical kits have been developed to speed up N-deglycosylation and N-glycan labelling of glycoproteins of pharmaceutical and biological interest such as monoclonal antibodies (mAbs). We exploited the analytical capabilities of RapiFluor-MS (RFMS) to perform, by a slightly modified protocol, a detailed N-glycan characterization of total serum and single serum glycoproteins from specific patients with CDG (MAN1B1-CDG, ALG12-CDG, MOGS-CDG, TMEM199-CDG). This strategy, accomplished by Hydrophilic Interaction Chromatography (HILIC)-UPLC-ESI-MS separation of the RFMS derivatized N-glycans, allowed us to uncover structural details of patients serum released N-glycans, thus extending the current knowledge on glycan profiles in these individual glycosylation diseases. The applied methodology enabled to differentiate in some cases either structural isomers and isomers differing in the linkage type. All the here reported applications demonstrated that RFMS method, coupled to HILIC-UPLC-ESI-MS, represents a sensitive high throughput approach for serum N-glycome analysis and a valuable option for glycan detection and separation particularly for isomeric species.


Assuntos
Defeitos Congênitos da Glicosilação/sangue , Polissacarídeos/sangue , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise Química do Sangue/métodos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Isomerismo , Manosidases/deficiência , Proteínas de Membrana/deficiência , alfa-Glucosidases/metabolismo
10.
J Biol Chem ; 295(32): 10969-10987, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32546484

RESUMO

Rhizobia are soil bacteria that form important symbiotic associations with legumes, and rhizobial surface polysaccharides, such as K-antigen polysaccharide (KPS) and lipopolysaccharide (LPS), might be important for symbiosis. Previously, we obtained a mutant of Sinorhizobium fredii HH103, rkpA, that does not produce KPS, a homopolysaccharide of a pseudaminic acid derivative, but whose LPS electrophoretic profile was indistinguishable from that of the WT strain. We also previously demonstrated that the HH103 rkpLMNOPQ operon is responsible for 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-l-glycero-l-manno-nonulosonic acid [Pse5NAc7(3OHBu)] production and is involved in HH103 KPS and LPS biosynthesis and that an HH103 rkpM mutant cannot produce KPS and displays an altered LPS structure. Here, we analyzed the LPS structure of HH103 rkpA, focusing on the carbohydrate portion, and found that it contains a highly heterogeneous lipid A and a peculiar core oligosaccharide composed of an unusually high number of hexuronic acids containing ß-configured Pse5NAc7(3OHBu). This pseudaminic acid derivative, in its α-configuration, was the only structural component of the S. fredii HH103 KPS and, to the best of our knowledge, has never been reported from any other rhizobial LPS. We also show that Pse5NAc7(3OHBu) is the complete or partial epitope for a mAb, NB6-228.22, that can recognize the HH103 LPS, but not those of most of the S. fredii strains tested here. We also show that the LPS from HH103 rkpM is identical to that of HH103 rkpA but devoid of any Pse5NAc7(3OHBu) residues. Notably, this rkpM mutant was severely impaired in symbiosis with its host, Macroptilium atropurpureum.


Assuntos
/microbiologia , Lipopolissacarídeos/química , Sinorhizobium fredii/química , Simbiose , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Superfície/imunologia , Proteínas de Bactérias/genética , Configuração de Carboidratos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Epitopos/imunologia , Lipopolissacarídeos/imunologia , Espectroscopia de Prótons por Ressonância Magnética , Sinorhizobium fredii/genética , Sinorhizobium fredii/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Açúcares Ácidos/química
11.
Glycoconj J ; 36(6): 461-472, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31529350

RESUMO

Congenital disorders of glycosylation (CDG) are genetic diseases characterized by deficient synthesis (CDG type I) and/or abnormal processing (CDG type II) of glycan moieties linked to protein and lipids. The impact of the molecular defects on protein glycosylation and in turn on the clinical phenotypes of patients with CDG is not yet understood. ALG12-CDG is due to deficiency of ALG12 α1,6-mannosyltransferase that adds the eighth mannose residue on the dolichol-PP-oligosaccharide precursor in the endoplasmic reticulum. ALG12-CDG is a severe multisystem disease associated with low to deficient serum immunoglobulins and recurrent infections. We thoroughly investigated the glycophenotype in a patient with novel ALG12 variants and immunodeficiency. We analyzed serum native transferrin, as first line test for CDG and we profiled serum IgG and total serum N-glycans by a combination of consolidated (N-glycan analysis by MALDI MS) and innovative mass spectrometry-based protocols, such as GlycoWorks RapiFluor N-glycan analysis coupled with LC-ESI MS. Intact serum transferrin showed, as expected for a CDG type I defect, underoccupancy of N-glycosylation sites. Surprisingly, total serum proteins and IgG N-glycans showed some specific changes, consisting in accumulating amounts of definite high-mannose and hybrid structures. As a whole, ALG12-CDG behaves as a dual CDG (CDG-I and II defects) and it is associated with distinct, abnormal glycosylation of total serum and IgG N-glycans. Glycan profiling of target glycoproteins may endorse the molecular defect unraveling the complex clinical phenotype of CDG patients.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Deficiência de IgG/genética , Imunoglobulinas/genética , Manosiltransferases/genética , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/sangue , Defeitos Congênitos da Glicosilação/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Glicoproteínas/sangue , Glicosilação , Humanos , Deficiência de IgG/sangue , Deficiência de IgG/metabolismo , Deficiência de IgG/patologia , Imunoglobulinas/sangue , Imunoglobulinas/deficiência , Lactente , Masculino , Manosiltransferases/sangue , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Polissacarídeos/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transferrina/genética , Transferrina/metabolismo , Sequenciamento do Exoma
12.
Methods Mol Biol ; 2044: 255-272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432418

RESUMO

CSF diagnostics has proved to be a formidable testing ground for N-glycoproteomic analysis of neurological diseases. To characterize specific N-glycan profiles of CSF in early and advanced phases of Alzheimer's disease, as well as in lysosomal storage disorders such as Tay-Sachs disease, we set up in our lab a robust and feasible protocol by coupling bioanalytical methods and mass spectrometry analysis.Starting from a few microliters of CSF, after protein denaturation, reduction, and alkylation, N-glycans are released from glycoproteins using the peptide-N-glycosidase F (PNGase F) and purified. The analysis of permethylated N-glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF MS/MS allowed us to identify specific glyco-structures and also to distinguish between isobaric N-glycans.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Glicoproteínas/líquido cefalorraquidiano , Glicoproteínas/química , Polissacarídeos/líquido cefalorraquidiano , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Doença de Tay-Sachs/líquido cefalorraquidiano , Idoso , Gangliosídeo G(M2)/metabolismo , Humanos , Íons/química , Polissacarídeos/análise , Polissacarídeos/isolamento & purificação
13.
Methods Mol Biol ; 1750: 75-91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29512066

RESUMO

In this chapter, we present the methodology currently applied in our laboratory for the structural elucidation of the cerebrospinal fluid (CSF) N-glycome. N-glycans are released from denatured carboxymethylated glycoproteins by digestion with peptide-N-glycosidase F (PNGase F) and purified using both C18 Sep-Pak® and porous graphitized carbon (PGC) HyperSep™ Hypercarb™ solid-phase extraction (SPE) cartridges. The glycan pool is subsequently permethylated to increase mass spectrometry sensitivity. Molecular assignments are performed through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) analysis considering either the protein N-linked glycosylation pathway or MALDI TOF MS/MS data. Each stage has been optimized to obtain high-quality mass spectra in reflector mode with an optimal signal-to-noise ratio up to m/z 4800. This method has been successfully adopted to associate specific N-glycome profiles to the early and the advanced phases of Alzheimer's disease.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Glicômica/métodos , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Glicoproteínas/líquido cefalorraquidiano , Glicosilação , Humanos , Polissacarídeos/líquido cefalorraquidiano
14.
Artigo em Inglês | MEDLINE | ID: mdl-29535976

RESUMO

Toll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni, the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.


Assuntos
Campylobacter jejuni/imunologia , Campylobacter jejuni/metabolismo , Doenças Transmitidas por Alimentos/microbiologia , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Animais , Campylobacter jejuni/patogenicidade , Citocinas/metabolismo , Fator Regulador 3 de Interferon/genética , Interleucina-1beta/metabolismo , Interleucina-6 , Lipídeo A/imunologia , Lipídeo A/isolamento & purificação , Lipídeo A/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
J Bacteriol ; 200(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109183

RESUMO

In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane (OM), preventing the entry of toxic molecules, such as detergents and antibiotics. LPS is transported from the inner membrane (IM) to the OM by the Lpt multiprotein machinery. Defects in LPS transport compromise LPS assembly at the OM and result in increased antibiotic sensitivity. LptA is a key component of the Lpt machine that interacts with the IM protein LptC and chaperones LPS through the periplasm. We report here the construction of lptA41, a quadruple mutant in four conserved amino acids potentially involved in LPS or LptC binding. Although viable, the mutant displays increased sensitivity to several antibiotics (bacitracin, rifampin, and novobiocin) and the detergent SDS, suggesting that lptA41 affects LPS transport. Indeed, lptA41 is defective in Lpt complex assembly, and its lipid A carries modifications diagnostic of LPS transport defects. We also selected and characterized two phenotypic bacitracin-resistant suppressors of lptA41 One mutant, in which only bacitracin sensitivity is suppressed, harbors a small in-frame deletion in mlaA, which codes for an OM lipoprotein involved in maintaining OM asymmetry by reducing accumulation of phospholipids in the outer leaflet. The other mutant, in which bacitracin, rifampin, and SDS sensitivity is suppressed, harbors an additional amino acid substitution in LptA41 and a nonsense mutation in opgH, encoding a glycosyltransferase involved in periplasmic membrane-derived oligosaccharide synthesis. Characterization of the suppressor mutants highlights different strategies adopted by the cell to overcome OM defects caused by impaired LPS transport.IMPORTANCE Lipopolysaccharide (LPS) is the major constituent of the outer membrane (OM) of most Gram-negative bacteria, forming a barrier against antibiotics. LPS is synthesized at the inner membrane (IM), transported across the periplasm, and assembled at the OM by the multiprotein Lpt complex. LptA is the periplasmic component of the Lpt complex, which bridges IM and OM and ferries LPS across the periplasm. How the cell coordinates the processes involved in OM biogenesis is not completely understood. We generated a mutant partially defective in lptA that exhibited increased sensitivity to antibiotics and selected for suppressors of the mutant. The analysis of two independent suppressors revealed different strategies adopted by the cell to overcome defects in LPS biogenesis.


Assuntos
Proteínas de Transporte/genética , Permeabilidade da Membrana Celular , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Lipopolissacarídeos/metabolismo , Supressão Genética , Substituição de Aminoácidos , Bacitracina/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Glicosiltransferases/genética , Lipídeo A/metabolismo , Proteínas de Membrana/metabolismo , Rifampina/farmacologia , Dodecilsulfato de Sódio/farmacologia
16.
Front Microbiol ; 8: 1821, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983292

RESUMO

In rhizobium strains, the lipid A is modified by the addition of a very long-chain fatty acid (VLCFA) shown to play an important role in rigidification of the outer membrane, thereby facilitating their dual life cycle, outside and inside the plant. In Bradyrhizobium strains, the lipid A is more complex with the presence of at least two VLCFAs, one covalently linked to a hopanoid molecule, but the importance of these modifications is not well-understood. In this study, we identified a cluster of VLCFA genes in the photosynthetic Bradyrhizobium strain ORS278, which nodulates Aeschynomene plants in a Nod factor-independent process. We tried to mutate the different genes of the VLCFA gene cluster to prevent the synthesis of the VLCFAs, but only one mutant in the lpxXL gene encoding an acyltransferase was obtained. Structural analysis of the lipid A showed that LpxXL is involved in the transfer of the C26:25OH VLCFA to the lipid A but not in the one of the C30:29OH VLCFA which harbors the hopanoid molecule. Despite maintaining the second VLCFA, the ability of the mutant to cope with various stresses (low pH, high temperature, high osmolarity, and antimicrobial peptides) and to establish an efficient nitrogen-fixing symbiosis was drastically reduced. In parallel, we investigated whether the BRADO0045 gene, which encodes a putative acyltransferase displaying a weak identity with the apo-lipoprotein N-acyltransferase Lnt, could be involved in the transfer of the C30:29OH VLCFA to the lipid A. Although the mutant exhibited phenotypes similar to the lpxXL mutant, no difference in the lipid A structure was observed from that in the wild-type strain, indicating that this gene is not involved in the modification of lipid A. Our results advance our knowledge of the biosynthesis pathway and the role of VLCFAs-modified lipid A in free-living and symbiotic states of Bradyrhizobium strains.

17.
ChemistryOpen ; 6(4): 541-553, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28794950

RESUMO

The importance of the outer membrane and of its main constituent, lipopolysaccharide, in the symbiosis between rhizobia and leguminous host plants has been well studied. Here, the first complete structural characterization of the entire lipopolysaccharide from an O-chain-deficient Bradyrhizobium ORS285 rfaL mutant is achieved by a combination of chemical analysis, NMR spectroscopy, MALDI MS and MS/MS. The lipid A structure is shown to be consistent with previously reported Bradyrhizobium lipid A, that is, a heterogeneous blend of penta- to hepta-acylated species carrying a nonstoichiometric hopanoid unit and possessing very-long-chain fatty acids ranging from 26:0(25-OH) to 32:0(31-OH). The structure of the core oligosaccharide region, fully characterized for the first time here, is revealed to be a nonphosphorylated linear chain with methylated sugar residues, with a heptose residue exclusively present in the outer core region, and with the presence of two singly substituted 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residues, one of which is located in the outer core region. The lipid A moiety is linked to the core moiety through an uncommon 4-substituted Kdo unit.

18.
Mar Drugs ; 15(7)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653982

RESUMO

The structural characterization of the lipopolysaccharide (LPS) from extremophiles has important implications in several biomedical and therapeutic applications. The polyextremophile Gram-negative bacterium Halobacteroideslacunaris TB21, isolated from one of the most extreme habitats on our planet, the deep-sea hypersaline anoxic basin Thetis, represents a fascinating microorganism to investigate in terms of its LPS component. Here we report the elucidation of the full structure of the R-type LPS isolated from H. lacunaris TB21 that was attained through a multi-technique approach comprising chemical analyses, NMR spectroscopy, and Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry. Furthermore, cellular immunology studies were executed on the pure R-LPS revealing a very interesting effect on human innate immunity as an inhibitor of the toxic Escherichia coli LPS.


Assuntos
Extremófilos/química , Bactérias Anaeróbias Gram-Negativas/química , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Animais , Linhagem Celular , Escherichia coli/química , Extremófilos/isolamento & purificação , Feminino , Bactérias Anaeróbias Gram-Negativas/isolamento & purificação , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Água do Mar/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Chembiochem ; 18(8): 772-781, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28186388

RESUMO

Xanthomonas citri pv. citri is the pathogen responsible for Asiatic citrus canker, one of the most serious citrus diseases worldwide. The lipopolysaccharide (LPS) molecule has been demonstrated to be involved in X. citri pv. citri virulence. Despite enormous progress in investigations of the molecular mechanisms for bacterial pathogenicity, determination of the detailed LPS structure-activity relationship is limited, as the current knowledge is mainly based on structural determination of one X. citri pv. citri strain. As X. citri pv. citri strains are distinguished into three main pathogenicity groups, we characterized the full structure of the LPS from two pathotypes that differ in their host-range specificity. This revealed an intriguing difference in LPS O-chain structure. We also tested the LPSs and isolated lipid A moieties for their ability to act as microbe-associated molecular patterns in Arabidopsis thaliana. Both LPS/lipid As induced ROS accumulation, but no difference was observed between the two pathotypes.


Assuntos
Lipopolissacarídeos/química , Fatores de Virulência/química , Xanthomonas/fisiologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Imunidade Inata , Lipídeo A/química , Lipopolissacarídeos/imunologia , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espécies Reativas de Oxigênio/metabolismo , Virulência , Fatores de Virulência/imunologia , Xanthomonas/classificação , Xanthomonas/imunologia
20.
Chemistry ; 23(15): 3637-3647, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28004420

RESUMO

The search for novel lipid A analogues from any biological source that can act as antagonists, displaying inhibitory activity towards the production of pro-inflammatory cytokines, or as immunomodulators in mammals, is a very topical issue. To this aim, the structure and immunological properties of the lipopolysaccharide lipid A from the purple nonsulfur bacterium Rhodopseudomonas palustris strain BisA53 have been determined. This lipid A displays a unique structural feature, with a non-phosphorylated skeleton made up of the tetrasaccharide Manp-α-(1→4)-GlcpN3N-ß-1→6-GlcpN3N-α-(1→1)-α-GalpA, and four primary amide-linked 14:0(3-OH) and, as secondary O-acyl substituents, a 16:0 and the very long-chain fatty acid 26:0(25-OAc), appended on the GlcpN3N units. This lipid A architecture is definitely rare, so far identified only in the genus Bradyrhizobium. Immunological tests on both murine bone-marrow-derived and human monocyte-derived macrophages revealed an extremely low immunostimulant capability of this LPS lipid A.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Lipídeo A/química , Lipídeo A/farmacologia , Rodopseudomonas/química , Animais , Células Cultivadas , Humanos , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Espectroscopia de Ressonância Magnética , Camundongos Endogâmicos C57BL , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...